Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making
نویسندگان
چکیده
Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined.
منابع مشابه
Neural and neurochemical basis of reinforcement-guided decision making.
Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different...
متن کاملDeep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson's disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, ...
متن کاملDeep Brain Stimulation of the Subthalamic Nucleus Improves Reward-Based Decision-Learning in Parkinson's Disease
Recently, the subthalamic nucleus (STN) has been shown to be critically involved in decision-making, action selection, and motor control. Here we investigate the effect of deep brain stimulation (DBS) of the STN on reward-based decision-learning in patients diagnosed with Parkinson's disease (PD). We determined computational measures of outcome evaluation and reward prediction from PD patients ...
متن کاملHold your horses: A dynamic computational role for the subthalamic nucleus in decision making
The basal ganglia (BG) coordinate decision making processes by facilitating adaptive frontal motor commands while suppressing others. In previous work, neural network simulations accounted for response selection deficits associated with BG dopamine depletion in Parkinson's disease. Novel predictions from this model have been subsequently confirmed in Parkinson patients and in healthy participan...
متن کاملInteraction Between Cognitive and Motor Cortico-Basal
28 In a previous modeling study Leblois et al. (2006) demonstrated an action selection 29 mechanism in cortico-basal ganglia loops based on competition between the positive 30 feedback, direct pathway through the striatum and the negative feedback, hyperdirect pathway 31 through the subthalamic nucleus. The present study investigates how multiple level action 32 selection could be performed by ...
متن کامل